Skip to content

Write Kafka data to MatrixOne using Flink

This chapter describes how to write Kafka data to MatrixOne using Flink.

Pre-preparation

This practice requires the installation and deployment of the following software environments:

Operational steps

Step one: Start the Kafka service

Kafka cluster coordination and metadata management can be achieved through KRaft or ZooKeeper. Here, instead of relying on standalone ZooKeeper software, we'll use Kafka's own KRaft for metadata management. Follow these steps to configure the configuration file, which is located in config/kraft/server.properties in the root of the Kafka software.

The configuration file reads as follows:

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# This configuration file is intended for use in KRaft mode, where
# Apache ZooKeeper is not present. See config/kraft/README.md for details.
#

############################# Server Basics #############################

# The role of this server. Setting this puts us in KRaft mode
process.roles=broker,controller

# The node id associated with this instance's roles
node.id=1

# The connect string for the controller quorum
controller.quorum.voters=1@xx.xx.xx.xx:9093

############################# Socket Server Settings #############################

# The address the socket server listens on.
# Combined nodes (i.e. those with `process.roles=broker,controller`) must list the controller listener here at a minimum.
# If the broker listener is not defined, the default listener will use a host name that is equal to the value of java.net.InetAddress.getCanonicalHostName(),
# with PLAINTEXT listener name, and port 9092.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092,CONTROLLER://:9093 listeners=PLAINTEXT://xx.xx.xx.xx:9092,CONTROLLER://xx.xx.xx.xx:9093

# Name of listener used for communication between brokers.
inter.broker.listener.name=PLAINTEXT

# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
#advertised.listeners=PLAINTEXT://localhost:9092

# A comma-separated list of the names of the listeners used by the controller.
# If no explicit mapping set in `listener.security.protocol.map`, default will be using PLAINTEXT protocol
# This is required if running in KRaft mode.
controller.listener.names=CONTROLLER

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
listener.security.protocol.map=CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
log.dirs=/home/software/kafka_2.13-3.5.0/kraft-combined-logs

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1 transaction.state.log.replication.factor=1 transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=72

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000 

When the file configuration is complete, start the Kafka service by executing the following command:

#Generate cluster ID 
$ KAFKA_CLUSTER_ID="$(bin/kafka-storage.sh random-uuid)" #Set log directory format 
$ bin/kafka-storage.sh format -t $KAFKA_CLUSTER_ID -c config/kraft/server.properties #Start Kafka service 
$ bin/kafka-server-start.sh config/kraft/server.properties

Step two: Create a Kafka theme

In order for Flink to read data from and write to MatrixOne, we need to first create a Kafka theme called "matrixone." Specify the listening address of the Kafka service as xx.xx.xx.xx:9092 using the --bootstrap-server parameter in the following command:

$ bin/kafka-topics.sh --create --topic matrixone --bootstrap-server xx.xx.xx.xx:9092

Step Three: Read MatrixOne Data

After connecting to the MatrixOne database, you need to do the following to create the required databases and data tables:

  1. Create databases and data tables in MatrixOne and import data:

    CREATE TABLE `users` (
    `id` INT DEFAULT NULL,
    `name` VARCHAR(255) DEFAULT NULL,
    `age` INT DEFAULT NULL
    )
    
  2. Write code in the IDEA integrated development environment:

    In IDEA, create two classes: User.java and Kafka2Mo.java. These classes are used to read data from Kafka using Flink and write the data to the MatrixOne database.

package com.matrixone.flink.demo.entity;

public class User {

    private int id;
    private String name;
    private int age;

    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public int getAge() {
        return age;
    }

    public void setAge(int age) {
        this.age = age;
    }
} 
package com.matrixone.flink.demo;

import com.alibaba.fastjson2.JSON;
import com.matrixone.flink.demo.entity.User;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.AbstractDeserializationSchema;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.connector.jdbc.internal.options.JdbcConnectorOptions;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.kafka.clients.consumer.OffsetResetStrategy;

import java.nio.charset.StandardCharsets;

/**
 * @author MatrixOne
 * @desc
 */
public class Kafka2Mo {

    private static String srcServer = "xx.xx.xx.xx:9092";
    private static String srcTopic = "matrixone";
    private static String consumerGroup = "matrixone_group";

    private static String destHost = "xx.xx.xx.xx";
    private static Integer destPort = 6001;
    private static String destUserName = "root";
    private static String destPassword = "111";
    private static String destDataBase = "test";
    private static String destTable = "person";

    public static void main(String[] args) throws Exception {

        // Initialize the environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // Set parallelism
        env.setParallelism(1);

        // Set kafka source information
        KafkaSource<User> source = KafkaSource.<User>builder()
                //Kafka service
                .setBootstrapServers(srcServer)
                // message subject
                .setTopics(srcTopic)
                // consumption group
                .setGroupId(consumerGroup)
                // offset Consume from the beginning when no offset is submitted
                .setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.LATEST))
                // custom parse message content
                .setValueOnlyDeserializer(new AbstractDeserializationSchema<User>() {
                    @Override
                    public User deserialize(byte[] message) {
                        return JSON.parseObject(new String(message, StandardCharsets.UTF_8), User.class);
                    }
                })
                .build();
        DataStreamSource<User> kafkaSource = env.fromSource(source, WatermarkStrategy.noWatermarks(), "kafka_maxtixone");
        //kafkaSource.print();

        // Set matrixone sink information
        kafkaSource.addSink(JdbcSink.sink()
                "insert into users (id,name,age) values(?,?,?)",
                (JdbcStatementBuilder<User>) (preparedStatement, user) -> {
                    preparedStatement.setInt(1, user.getId());
                    preparedStatement.setString(2, user.getName());
                    preparedStatement.setInt(3, user.getAge());
                },
                JdbcExecutionOptions.builder()
                        //Default value 5000
                        .withBatchSize(1000)
                        //Default value is 0
                        .withBatchIntervalMs(200)
                        // Maximum number of attempts
                        .withMaxRetries(5)
                        .build(),
                JdbcConnectorOptions.builder()
                        .setDBUrl("jdbc:mysql://"+destHost+":"+destPort+"/"+destDataBase)
                        .setUsername(destUserName)
                        .setPassword(destPassword)
                        .setDriverName("com.mysql.cj.jdbc.Driver")
                        .setTableName(destTable)
                        .build()
        ));
        env.execute();
    }
} 

Once the code is written, you can run the Flink task, which is to select the Kafka2Mo.java file in IDEA and execute Kafka2Mo.Main().

Step Four: Generating Data

Using the command-line producer tools provided by Kafka, you can add data to Kafka's "matrixone" theme. In the following command, use the --topic parameter to specify the topic to add to, and the --bootstrap-server parameter to specify the listening address of the Kafka service.

bin/kafka-console-producer.sh --topic matrixone --bootstrap-server xx.xx.xx.xx:9092

After executing the above command, you will wait on the console to enter the message content. Simply enter the message value (value) directly, one message per line (separated by a newline character), as follows:

{"id": 10, "name": "xiaowang", "age": 22}
{"id": 20, "name": "xiaozhang", "age": 24}
{"id": 30, "name": "xiaogao", "age": 18}
{"id": 40, "name": "xiaowu", "age": 20}
{"id": 50, "name": "xiaoli", "age": 42}

Step Five: View Implementation Results

Execute the following SQL query results in MatrixOne:

mysql> select * from test.users;
+------+-----------+------+
| id   | name      | age  |
+------+-----------+------+
|   10 | xiaowang  |   22 |
|   20 | xiaozhang |   24 |
|   30 | xiaogao   |   18 |
|   40 | xiaowu    |   20 |
|   50 | xiaoli    |   42 |
+------+-----------+------+
5 rows in set (0.01 sec)